Yanchep Rise Numeracy Information Session

> Parent's Guide to Basic Number Facts (times table knowledge)

Times Tables Vocabulary

The Importance of Times Tables Knowledge

Knowing times tables facts is crucially important to your child's progression in their mathematics education. Without a thorough understanding of multiplication and division facts, children frequently get 'lost' when it comes to do anything with fractions and any multiplication or division with larger numbers. Many mental maths activities and tests require a quick recall of multiplication and division facts.

Children who are secure in their times tables knowledge are able to get to grips with trickier tasks straight away and are far more successful.

It is worth explaining what we mean by 'knowing' times tables. A child who knows their times tables will be able to recall any of the multiples of a times table out of order within 3 seconds, as well as knowing the corresponding division facts i.e. $4 \times 6 = 24$ as well as $24 \div 6 = 4$.

Learning multiplication facts and tables are most effective when there is collaboration with school, parents and children. In school we regularly spend time learning times tables, but a child will be much more successful if they practise outside school independently and alongside parents.

Independent

parents

Here are some words that may be used whilst learning and applying multiplication and division.

multiply divide prime product once, twice, three times lots of repeated addition times factors array, row, column double repeated subtraction multiple sets of remainder halve

Here are some of the trickier words defined:

Factor – One number is a factor of another if it divides or 'goes into' it exactly (without any left over, a remainder). E.g. 6 is a factor of 30 because it goes into it 5 times, but is not a factor of 33 because after dividing there is a remainder of 3.

Groups of/ lots of/ sets of -3 groups of 5 are 15, 3 lots of 5 are 15, 3 sets of 5 are 15 (3 x 5 = 15).

Multiple - These are the numbers that you find in a times table. E.g. 20 is a multiple of 5, 4, 2 and 10 because it is found in all of those times tables. The multiples of 5 are 5, 10, 15, 20 etc.

Product - A product is the answer you get when you multiply two or more numbers together. E.g. the product of 3 and 4 is 12 $(3 \times 4 = 12)$.

Prime – A prime number will only divide equally between 1 and itself e.g. 7, 11. The first ten prime numbers are: 2,3,5,7,11,13,17,19,23,29.

Array – As shown, an array is a visual representation of multiplication. Shown are 3 rows of 5 with 15 in total.

00000

Learning Times Tables

6. Online Resources

There are many free multiplication and division games available online. Just use the search engine to uncover them all. Here are a few places to get you started:

www.multiplication.com

www.coolmath-games.com

http://www.oswego.org/ocsd-web/games/Mathmagician/mathsmulti.html

http://www.transum.org/Tables/Times_Tables.asp

www.tablestest.com

www.mathletics.co.uk

Many apps also exist for smart phones and tablets. Many of these are free to download. Search in the App store or on Google Play. Ibooks can also be helpful such as Carol Vorderman Maths Made Easy Times Tables.

Songs can be accessed on Mathletics (Times Tables Toons) or can be downloaded at a cost. For example Times Tables Challenge by Kidzone, available through Amazon mp3.

These online resources are good but are usually not enough in themselves for learning multiplication tables off by heart. They are best suited for consolidating times table knowledge and for increasing the speed of recall.

7. Quick Questions Anywhere!

A few questions here and there are much better than hundreds in one go.

- on the way to school
- in advert breaks
- whilst getting dressed
- a few before bed

Top Times Table Hints

It may seem a daunting task to learn so many multiplication facts, but because of the commutative property of multiplication, there are fewer facts than you may think. For example, 3 x 4 and 4 x 3 give the same answer so you need to only learn this once.

Zero Times Table

Anything multiplied by zero will always equal zero. Multiplication is repeated addition so 3×0 is 0 + 0 + 0, which equals 0.

One Times table

Any number multiplied by one is itself.

Two Times Table

Any number multiplied by two is double the number.

7 x 2 =14 7 + 7 = 14 double 7 is 14

Three Times Table

Digits within this times table add up to multiples of 3. For example: 3, 6, 9, 12 (1+2=3), 15 (1+5=6), 18 (1+8=9) 21 (2+1=3), 24 (2+4=6) etc. The numbers also follow the pattern of: odd, even, odd, even (3,6,9,12).

Four Times Table

The four times table is double the two times table. $4 \times 2 = 8, 4 \times 4 = 16, 16$ is double 8.

Alternatively the fours can be thought of as double double. So double 3 (6) and double again (12) is the same as $3 \times 4 = 12$.

Five Times Table

All multiples of 5 end in five or zero. For even numbers (e.g. 8×5) you can halve the number (4) and then put a zero after it (40). For odd numbers (e.g. 7×5) you can subtract one from the number (6), halve it (3) and then put a 5 after it (35).

Any odd number times 5 ends in a 5. Any even number times 5 ends in 0. Six Times Table

The six times table is double the three times table.

So 5 x 3 = 15, 5 x 6 = 30, 30 is double 15.

Seven Times Table

Combine the 5 and the 2 times table: $7 \times 4 = 28$ or (5x4) + (2x4) = 28Eight Times Table

The eight times table is double the four times table. So $7 \times 4 = 28$, $7 \times 8 = 56$, 56 is double 28.

The units in the multiples of eight also go down in twos.

8, 16, 24, 32, 40, 48, 56, 64, 72, 80 (8, 6, 4, 2, 0, 8, 6, 4, 2, 0).

Top Times Table Hints

Nine Times Tables

Fingers can be used to work out the nine times table up to 10×9 . The first finger is put down for 1×9 and the remaining fingers show 9 units $(1 \times 9 = 9)$. Then the second finer is put down for 2×9 and the remaining fingers show 1 ten (to the left) and 8 units (to the right) which equals 18, and so on. For example:

The digits found in the multiples of nine when added together also equal nine. For example: 9 = 9, 18 (1 + 8) = 9, 27 (2 + 7) = 9, 36 (3 + 6) = 9, 45 (4 + 5) = 9 etc.

Ten Times Table

All the digits in the ten times table end in zero.

Eleven Times Table

Most of the multiples in the eleven times table are recalled by putting two of the number side by side.

7 x 11 = **77**, 8 x 11 =**88**.

Twelve Times Table

The units in the twelve times table go up in twos. 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144 (2, 4, 6, 8, 0, 2, 4, 6, 8, 0). The multiples of 12 are also the multiples of 10 and the multiples of 2 combined.

Odd and Even Numbers

The following rules always apply:

E x E = E	E x O = E	O x E = E	0 x 0 = 0
2 x 6 = 12	4 x 5 = 20	9 x 2 = 18	7 x 3 = 21

Therefore, the only time you get an odd answer is when two odd numbers are multiplied together.

12 x 12 Multiplication Grid

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Notice the diagonally shaded numbers. These are square numbers.

The answer to a whole number multiplied by itself is a square number.

 $1 \times 1 = 1$ $2 \times 2 = 4$ $3 \times 3 = 9$ $4 \times 4 = 16$ $5 \times 5 = 25$ $6 \times 6 = 36$

 $7 \times 7 = 49$ $8 \times 8 = 64$ $9 \times 9 = 81$ $10 \times 10 = 100$ $11 \times 11 = 121$

12 x 12 = **144**

Basic Facts Minimum Expectations for Your Child

At Yanchep Rise basic facts are taught from Pre-Primary. Below are the times tables your child should know as a minimum by the end of the academic year.

Year	By the end of the year
Level	
	- Skip count in 2s, 5s and 10s
2	 Skip count in 2s, 5s and 10s 2 and 10 times tables and related division facts
3	- 2, 3, 4, 5, 6, 10 times tables and related division facts
4	- As above - 7, 8, 9 times tables and related division facts
5	– Fluency
6	– Fluency